Weak logarithmic Sobolev inequalities and entropic convergence

نویسندگان

  • Patrick Cattiaux
  • Ivan Gentil
  • Arnaud Guillin
چکیده

In this paper we introduce and study a weakened form of logarithmic Sobolev inequalities in connection with various others functional inequalities (weak Poincaré inequalities, general Beckner inequalities...). We also discuss the quantitative behaviour of relative entropy along a symmetric diffusion semi-group. In particular, we exhibit an example where Poincaré inequality can not be used for deriving entropic convergence whence weak logarithmic Sobolev inequality ensures the result. Mathematics Subject Classification 2000: 26D10, 60E15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Poincaré Inequality on Loop Spaces

We investigate properties of measures in infinite dimensional spaces in terms of Poincaré inequalities. A Poincaré inequality states that the L2 variance of an admissible function is controlled by the homogeneous H1 norm. In the case of Loop spaces, it was observed by L. Gross [17] that the homogeneous H1 norm alone may not control the L2 norm and a potential term involving the end value of the...

متن کامل

Logarithmic Harnack inequalities∗

Logarithmic Sobolev inequalities first arose in the analysis of elliptic differential operators in infinite dimensions. Many developments and applications can be found in several survey papers [1, 9, 12]. Recently, Diaconis and Saloff-Coste [8] considered logarithmic Sobolev inequalities for Markov chains. The lower bounds for log-Sobolev constants can be used to improve convergence bounds for ...

متن کامل

Functional inequalities and uniqueness of the Gibbs measure — from log-Sobolev to Poincaré

In a statistical mechanics model with unbounded spins, we prove uniqueness of the Gibbs measure under various assumptions on finite volume functional inequalities. We follow Royer’s approach ([11]) and obtain uniqueness by showing convergence properties of a Glauber-Langevin dynamics. The result was known when the measures on the box [−n, n] (with free boundary conditions) satisfied the same lo...

متن کامل

Links between the Logarithmic Sobolev Inequality and the convolution inequalities for Entropy and Fisher Information

Relative to the Gaussian measure on R, entropy and Fisher information are famously related via Gross’ logarithmic Sobolev inequality (LSI). These same functionals also separately satisfy convolution inequalities, as proved by Stam. We establish a dimension-free inequality that interpolates among these relations. Several interesting corollaries follow: (i) the deficit in the LSI satisfies a conv...

متن کامل

Lyapunov Conditions for Logarithmic Sobolev and Super Poincaré Inequality

We show how to use Lyapunov functions to obtain functional inequalities which are stronger than Poincaré inequality (for instance logarithmic Sobolev or F -Sobolev). The case of Poincaré and weak Poincaré inequalities was studied in [2]. This approach allows us to recover and extend in an unified way some known criteria in the euclidean case (BakryEmery, Wang, Kusuoka-Stroock ...).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005